Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ashley T. Hulme* and Derek A. Tocher

Christopher Ingold Laboratory, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, England

Correspondence e-mail: a.hulme@ucl.ac.uk

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.003 Å R factor = 0.028 wR factor = 0.074 Data-to-parameter ratio = 6.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-Fluorouracil-2,2,2-trifluoroethanol (1/1)

The title compound, $C_4H_3FN_2O_2\cdot C_2H_3F_3O$, crystallizes with one 5-fluorouracil and one 2,2,2-trifluoroethanol molecule in the asymmetric unit. The 5-fluorouracil molecules are linked into a chain primarily *via* N-H···O hydrogen bonds, with the 2,2,2-trifluoroethanol molecules attached to this *via* O-H···O hydrogen bonds.

Comment

The title compound, (I), is the fourth solvate of 5-fluorouracil obtained in the course of a polymorph screen. The previously published structures contained 1,4-dioxane (Hulme & Tocher, 2004*a*), dimethylformamide (Hulme & Tocher, 2004*b*) and dimethylsulfoxide (Hulme & Tocher, 2004*c*).

One fluorouracil molecule and one 2,2,2-trifluoroethanol molecule are present in the asymmetric unit of (I) (Fig. 1). This structure bears no similarity to any of the previously reported solvate structures of 5-fluorouracil.

The 5-fluorouracil molecules of (I) form a ribbon propagated by the screw axis, with trifluoroethanol molecules attached to the outer edges of the ribbon. Each 5-fluorouracil molecule forms two $R_2^2(8)$ hydrogen bonds with adjacent 5-fluorouracil molecules, as shown in Fig. 2; details are given in Table 1. A further hydrogen bond joins the 5-fluorouracil carbonyl O atom, unused in forming the ribbon, with the hydroxyl group of the trifluoroethanol molecule (Fig. 2 and Table 1).

The ribbons stack upon one another parallel to [001] (Fig. 3). Close $F \cdots F$ contacts are an interesting feature present in this structure. There is a short $F \cdots F$ contact within the ribbon, $F9 \cdots F12^{iv}$ [2.891 (2) Å; symmetry code: (iv) x, y + 1, z], which acts as a weak stabilizing interaction for the

Received 3 October 2005 Accepted 10 October 2005 Online 15 October 2005

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The structure of the ribbon, showing $R_2^2(8)$ hydrogen-bonded dimers and the hydrogen bonds (dotted lines) between 5-fluorouracil and 2,2,2trifluoroethanol.

Figure 3

The stacking of the ribbons side-by-side into layers. Hydrogen bonds are shown as dotted lines.

ribbon motif. A short contact is also present between trifluoromethyl groups in ribbons of adjacent layers, viz. F12···F13^v [3.001 (2) Å; symmetry code: (v) -x, $y - \frac{1}{2}$, -z]. A third short $F \cdots F$ contact, $F9 \cdots F13^{vi}$ [2.906 (2) Å; symmetry code: (vi) $1 - x, \frac{1}{2} + y, -z$], also links ribbons in adjacent layers. These interlayer $F \cdots F$ contacts are the only interactions between the layers.

Experimental

Typically, crystals of length 2-5 mm were grown from a solution of 5-fluorouracil in 2,2,2-trifluoroethanol by solvent evaporation. Attempts to cut crystals to a suitable size for X-ray diffraction led to shattering. Consequently, a large crystal with a longest dimension of 1.49 mm was mounted and used for the experiment.

Crystal data

$C_4H_3FN_2O_2 \cdot C_2H_3F_3O$	$D_x = 1.788 \text{ Mg m}^{-3}$
$M_r = 230.13$	Mo $K\alpha$ radiation
Monoclinic, $P2_1$	Cell parameters from 2027
a = 5.3976 (6) Å	reflections
p = 6.7062 (8) Å	$\theta = 3.5 - 28.1^{\circ}$
= 12.1098 (14) Å	$\mu = 0.19 \text{ mm}^{-1}$
$B = 102.807 (2)^{\circ}$	T = 150 (2) K
$V = 427.44 (9) \text{ Å}^3$	Lath, colourless
Z = 2	$1.49 \times 0.34 \times 0.17 \text{ mm}$

Data collection

Bruker SMART APEX diffractometer ω rotation scans with narrow frames Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.760, \ T_{\max} = 0.968$ 2634 measured reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0503P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.074$ $(\Delta/\sigma)_{\rm max} < 0.001$ S = 1.04 $\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$ 1090 reflections $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$ 160 parameters All H-atom parameters refined

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3\cdots O7^{i}$ $N1-H1\cdots O7^{ii}$ $N1-H1\cdots O11^{iii}$ $O11-H11\cdots O8$	0.87 (3) 0.82 (3) 0.82 (3) 0.76 (3)	1.92 (3) 2.20 (3) 2.43 (3) 2.00 (3)	2.786 (2) 2.924 (2) 3.037 (2) 2.7507 (19)	173 (2) 147 (2) 132 (2) 171 (3)
Symmetry codes: $x + 1, y + 1, z$.	(i) $-x + 3, y$	$-\frac{1}{2}, -z+1;$	(ii) $-x + 3, y + \frac{1}{2}$, -z + 1; (iii)

All H atoms were located in a difference map and were refined isotropically, with C-H distances between 0.89 (3) and 0.97 (2) Å. See Table 1 for N-H and O-H bond distances.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXL97.

1090 independent reflections 1060 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.017$

 $\theta_{\rm max} = 28.2^{\circ}$ $h = -7 \rightarrow 6$

 $k = -8 \rightarrow 8$

 $l = -15 \rightarrow 15$

+ 0.0688P] where $P = (F_0^2 + 2F_c^2)/3$ The authors acknowledge the EPSRC's UK Basic Technology Programme for supporting 'Control and Prediction of the Organic Solid State'.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Hulme, A. T. & Tocher, D. A. (2004a). Acta Cryst. E60, o1781o1782.
- Hulme, A. T. & Tocher, D. A. (2004b). Acta Cryst. E60, 01783-01785.
- Hulme, A. T. & Tocher, D. A. (2004c). Acta Cryst. E60, o1786-o1787.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). *CAMERON*. Chemical Crystallography Laboratory, University of Oxford, England.